Improving Probabilistic Error Cancellation in the Presence of Nonstationary Noise

In this article, we investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of nonstationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a five-qubit implementation of the Bernstein–Vazirani algorithm and conducted on the […]

Noise Robustness of Quantum Relaxation for Combinatorial Optimization

Relaxation is a common way for dealing with combinatorial optimization problems. Quantum random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than the number of bits in the original problem by encoding multiple variables per qubit using quantum random-access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence), and […]

Distributionally Robust Variational Quantum Algorithms With Shifted Noise

Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical […]