Efficient Construction of a Control Modular Adder on a Carry-Lookahead Adder Using Relative-Phase Toffoli Gates

Control modular addition is a core arithmetic function, and we must consider the computational cost for actual quantum computers to realize efficient implementation. To achieve a low computational cost in a control modular adder, we focus on minimizingKQ (where K is the number of logical qubits required by the algorithm, and Q is the elementary […]

On the Realistic Worst-Case Analysis of Quantum Arithmetic Circuits

We provide evidence that commonly held intuitions when designing quantum circuits can be misleading. In particular, we show that 1) reducing the T-count can increase the total depth; 2) it may be beneficial to trade controlled NOTs for measurements in noisy intermediate-scale quantum (NISQ) circuits; 2) measurement-based uncomputation of relative phase Toffoli ancillae can make […]