High-Fidelity Control of Superconducting Qubits Using Direct Microwave Synthesis in Higher Nyquist Zones

Control electronics for superconducting quantum processors have strict requirements for accurate command of the sensitive quantum states of their qubits. Hinging on the purity of ultra-phase-stable oscillators to upconvert very-low-noise baseband pulses, conventional control systems can become prohibitively complex and expensive when scaling to larger quantum devices, especially as high sampling rates become desirable for […]

A Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era

Due to several physical limitations in the realization of quantum hardware, today’s quantum computers are qualified as noisy intermediate-scale quantum (NISQ) hardware. NISQ hardware is characterized by a small number of qubits (50 to a few hundred) and noisy operations. Moreover, current realizations of superconducting quantum chips do not have the ideal all-to-all connectivity between […]

Logical Clifford Synthesis for Stabilizer Codes

Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators to be translated into physical operators acting on physical quantum states. In this article, we propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the […]