The Optimization and Application of 3-Bit Hermitian Gates and Multiple Control Toffoli Gates

The well-known 3-bit Hermitian gate (a Toffoli gate) has been implemented using Clifford+T circuits. Compared with the Peres gate, its implementation circuit requires more controlled- not (cnot) gates. However, the Peres gate is not Hermitian. This article reports four 3-bit Hermitian gates named LI gates, whose realized circuits have the same T-count, T-depth, and cnot […]

DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various […]

Efficient Quantum Network Communication Using Optimized Entanglement Swapping Trees

Quantum network communication is challenging, as the no-cloning theorem in the quantum regime makes many classical techniques inapplicable; in particular, the direct transmission of qubit states over long distances is infeasible due to unrecoverable errors. For the long-distance communication of unknown quantum states, the only viable communication approach (assuming local operations and classical communications) is […]

A Connection-Oriented Entanglement Distribution Design in Quantum Networks

Quantum networks create a completely new way for communication, and the most important function of a quantum network is to generate long-distance quantum entanglement to serve a number of quantum applications. As the scale of the network expands, in order to establish end-to-end entanglement between two remote nodes, entangled pairs need to be generated and […]

Model-Predictive Quantum Control via Hamiltonian Learning

This article proposes an end-to-end framework for the learning-enabled control of closed quantum systems. The proposed learning technique is the first of its kind to utilize a hierarchical design, which layers probing control, quantum state tomography, quantum process tomography, and Hamiltonian learning to identify both the internal and control Hamiltonians. Within this context, a novel […]

Qubit-Compatible Substrates With Superconducting Through-Silicon Vias

We fabricate and characterize superconducting through-silicon vias and electrodes suitable for superconducting quantum processors. We measure internal quality factors of a million for test resonators excited at single-photon levels, on chips with superconducting vias used to stitch ground planes on the front and back sides of the chips. This resonator performance is on par with […]

Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]

Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer Programming Problems in Production Scheduling

Quantum computing (QC) holds great promise to open up a new era of computing and has been receiving significant attention recently. To overcome the performance limitations of near-term QC, utilizing the current quantum computers to complement classical techniques for solving real-world problems is of utmost importance. In this article, we develop QC-based solution strategies that […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers

The discrete logarithm problem (DLP) is the basis for several cryptographic primitives. Since Shor’s work, it has been known that the DLP can be solved by combining a polynomial-size quantum circuit and a polynomial-time classical postprocessing algorithm. The theoretical result corresponds the situation where a quantum device working with a medium number of qubits of […]