Enabling Efficient Real-Time Calibration on Cloud Quantum Machines

Noisy intermediate-scale quantum computers are widely used for quantum computing (QC) from quantum cloud providers. Among them, superconducting quantum computers, with their high scalability and mature processing technology based on traditional silicon-based chips, have become the preferred solution for most commercial companies and research institutions to develop QC. However, superconducting quantum computers suffer from fluctuation […]

MIMO Terahertz Quantum Key Distribution Under Restricted Eavesdropping

Quantum key distribution (QKD) can provide unconditional security to next-generation communication networks guaranteed by the laws of quantum physics. This article studies the secret key rate (SKR) of a continuous variable QKD (CV-QKD) system using multiple-input multiple-output (MIMO) transmission and operating at terahertz (THz) frequencies. Distinct from previous works, we consider a practical “restricted” eavesdropping […]

Design and Analysis of Digital Communication Within an SoC-Based Control System for Trapped-Ion Quantum Computing

Large-scale quantum information processing requires the use of quantum error-correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates, as they can be implemented using only local interactions in a 2-D array of physical qubits. Procedures, such as defect braiding and lattice surgery, can […]

Fundamentals of Quantum Fourier Optics

All-quantum signal processing techniques are at the core of the successful advancement of most information-based quantum technologies. This article develops coherent and comprehensive methodologies and mathematical models to describe Fourier optical signal processing in full quantum terms for any input quantum state of light. We begin this article by introducing a spatially 2-D quantum state […]

A Feasible Quantum Sealed-Bid Auction Scheme Without an Auctioneer

In this article, we first define a primitive problem of secure multiparty computations, i.e., secure multiparty disjunction (SMD), and present a novel quantum protocol for SMD that can ensure information-theoretical security, i.e., unconditional security. Furthermore, based on the quantum SMD protocol, we design a quantum sealed-bid auction (QSA) scheme without an auctioneer. In the proposed […]

Pauli Error Propagation-Based Gate Rescheduling for Quantum Circuit Error Mitigation

Noisy intermediate-scale quantum algorithms, which run on noisy quantum computers, should be carefully designed to boost the output state fidelity. While several compilation approaches have been proposed to minimize circuit errors, they often omit the detailed circuit structure information that does not affect the circuit depth or the gate count. In the presence of spatial […]

Simultaneous Execution of Quantum Circuits on Current and Near-Future NISQ Systems

In the noisy intermediate-scale quantum (NISQ) era, the idea of quantum multiprogramming , running multiple quantum circuits (QCs) simultaneously on the same hardware, helps to improve the throughput of quantum computation. However, the crosstalk, unwanted interference between qubits on NISQ processors, may cause performance degradation when using multiprogramming. To address this challenge, we introduce palloq […]

Quantum Kernels for Real-World Predictions Based on Electronic Health Records

Research on near-term quantum machine learning has explored how classical machine learning algorithms endowed with access to quantum kernels (similarity measures) can outperform their purely classical counterparts. Although theoretical work has shown a provable advantage on synthetic data sets, no work done to date has studied empirically whether the quantum advantage is attainable and with […]

Mutation Testing of Quantum Programs: A Case Study With Qiskit

As quantum computing is still in its infancy, there is an inherent lack of knowledge and technology to test a quantum program properly. In the classical realm, mutation testing has been successfully used to evaluate how well a program’s test suite detects seeded faults (i.e., mutants). In this article, building on the definition of syntactically […]

A Software Development Kit and Translation Layer for Executing Intel 8080 Assembler on a Quantum Computer (August 2022)

One of the major obstacles to the adoption of quantum computing is the requirement to define quantum circuits at the quantum gate level. Many programmers are familiar with high-level or low-level programming languages but not quantum gates nor the low-level quantum logic required to derive useful results from quantum computers. The steep learning curve involved […]