Engineering the Quantum Scientific Computing Open User Testbed

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can […]

Reducing the Depth of Linear Reversible Quantum Circuits

In quantum computing the decoherence time of the qubits determines the computation time available, and this time is very limited when using current hardware. In this article, we minimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, […]

Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way

Existing protocols for benchmarking current quantum coprocessors fail to meet the usual standards for assessing the performance of high-performance-computing platforms. After a synthetic review of these protocols—whether at the gate, circuit, or application level—we introduce a new benchmark, dubbed Atos Q-score, which is application-centric, hardware-agnostic, and scalable to quantum advantage processor sizes and beyond. The […]

One-Dimensional Lazy Quantum Walk in Ternary System

Quantum walks play an important role for developing quantum algorithms and quantum simulations. Here, we introduce a first of its kind one-dimensional lazy quantum walk in the ternary quantum domain and show its equivalence for circuit realization in ternary quantum logic. Using an appropriate logical mapping of the position space on which a walker evolves […]

Survey on Quantum Circuit Compilation for Noisy Intermediate-Scale Quantum Computers: Artificial Intelligence to Heuristics

Computationally expensive applications, including machine learning, chemical simulations, and financial modeling, are promising candidates for noisy intermediate scale quantum (NISQ) computers. In these problems, one important challenge is mapping a quantum circuit onto NISQ hardware while satisfying physical constraints of an underlying quantum architecture. Quantum circuit compilation (QCC) aims to generate feasible mappings such that […]

Variational Learning for Quantum Artificial Neural Networks

In the past few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of quantum machine learning aims at bringing together these two ongoing revolutions. Here, we first review a series of […]

Distributed Quantum Computing and Network Control for Accelerated VQE

Interconnecting small quantum computers will be essential in the future for creating large-scale, robust quantum computers. Methods for distributing monolithic quantum algorithms efficiently are, thus, needed. In this article, we consider an approach for distributing the accelerated variational quantum eigensolver algorithm over arbitrary sized—in terms of number of qubits—distributed quantum computers. We consider approaches for […]

Compiler Design for Distributed Quantum Computing

In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units can communicate and cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum […]

Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer

Various sources of noise limit the performance of quantum computers by altering qubit states in an uncontrolled manner throughout computations and reducing their coherence time. In quantum annealers, this noise introduces additional fluctuations to the parameters defining the original problem Hamiltonian, such that they find the ground states of problems perturbed from those originally programmed. […]

Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]