The Optimization and Application of 3-Bit Hermitian Gates and Multiple Control Toffoli Gates

The well-known 3-bit Hermitian gate (a Toffoli gate) has been implemented using Clifford+T circuits. Compared with the Peres gate, its implementation circuit requires more controlled- not (cnot) gates. However, the Peres gate is not Hermitian. This article reports four 3-bit Hermitian gates named LI gates, whose realized circuits have the same T-count, T-depth, and cnot […]

Noise Reduction Methods for Charge Stability Diagrams of Double Quantum Dots

Operating semiconductor quantum dots as quantum bits requires isolating single electrons by adjusting gate voltages. The transitions of electrons to and from the dots appear as a honeycomb-like pattern in recorded charge stability diagrams (CSDs). Thus, detecting the pattern is essential to tune a double dot, but manual tuning is seriously time-consuming. However, automation of […]

Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers

The discrete logarithm problem (DLP) is the basis for several cryptographic primitives. Since Shor’s work, it has been known that the DLP can be solved by combining a polynomial-size quantum circuit and a polynomial-time classical postprocessing algorithm. The theoretical result corresponds the situation where a quantum device working with a medium number of qubits of […]

Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]

Noise Reduction Methods for Charge Stability Diagrams of Double Quantum Dots

Operating semiconductor quantum dots as quantum bits requires isolating single electrons by adjusting gate voltages. The transitions of electrons to and from the dots appear as a honeycomb-like pattern in recorded charge stability diagrams (CSDs). Thus, detecting the pattern is essential to tune a double dot, but manual tuning is seriously time-consuming. However, automation of […]

Quantum Circuit Architecture Optimization for Variational Quantum Eigensolver via Monto Carlo Tree Search

The advent of noisy intermediate-scale quantum (NISQ) devices provide crucial promise for the development of quantum algorithms. Variational quantum algorithms have emerged as one of the best hopes to utilize NISQ devices. Among these is the famous variational quantum eigensolver (VQE), where one trains a parameterized and fixed quantum circuit (or an ansatz) to accomplish […]

Experimental Demonstrations of Native Implementation of Boolean Logic Hamiltonian in a Superconducting Quantum Annealer

Experimental demonstrations of quantum annealing with “native” implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing with no redundant qubits. As examples of the truth table, nand and nor are successfully fabricated […]

Quantum Generative Models for Small Molecule Drug Discovery

Existing drug discovery pipelines take 5–10 years and cost billions of dollars. Computational approaches aim to sample from regions of the whole molecular and solid-state compounds called chemical space, which could be on the order of 1060. Deep generative models can model the underlying probability distribution of both the physical structures and property of drugs and […]