Attacking the Quantum Internet

The main service provided by the coming quantum Internet will be creating entanglement between any two quantum nodes. We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers. We have modeled the components for and structure of quantum repeater network nodes. With this model, we point […]

Identification of Time-Varying Decoherence Rates for Open Quantum Systems

Parameter identification of quantum systems is a fundamental task in developing practical quantum technology. In this article, we study the identification of time-varying decoherence rates for open quantum systems. Given the measurement data of local observables, this can be formulated as an optimization problem. We expand the unknown decoherence rates into Fourier series and take […]

QuNetSim: A Software Framework for Quantum Networks

As quantum network technologies develop, the need for teaching and engineering tools such as simulators and emulators rises. QuNetSim addresses this need. QuNetSim is a Python software framework that delivers an easy-to-use interface for simulating quantum networks at the network layer, which can be extended at little effort of the user to implement the corresponding […]

Single-Qubit Fidelity Assessment of Quantum Annealing Hardware

As a wide variety of quantum computing platforms become available, methods for assessing and comparing the performance of these devices are of increasing interest and importance. Inspired by the success of single-qubit error rate computations for tracking the progress of gate-based quantum computers, this work proposes a quantum annealing single-qubit assessment (QASA) protocol for quantifying […]

Enhanced Uplink Quantum Communication With Satellites via Downlink Channels

In developing the global quantum Internet, quantum communication with low-earth-orbit satellites will play a pivotal role. Such communication will need to be two way: effective not only in the satellite-to-ground (downlink) channel but also in the ground-to-satellite channel (uplink). Given that losses on this latter channel are significantly larger relative to the former, techniques that […]

Request Scheduling in Quantum Networks

Quantumnetworking is emerging as a new research area to explore the opportunities of interconnecting quantum systems through end-to-end entanglement of qubits at geographical distance via quantum repeaters. A promising architecture has been proposed in the literature that decouples entanglement between adjacent quantum nodes/repeaters from establishing end-to-end paths by adopting a time slotted approach. Within this […]

Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way

Existing protocols for benchmarking current quantum coprocessors fail to meet the usual standards for assessing the performance of high-performance-computing platforms. After a synthetic review of these protocols—whether at the gate, circuit, or application level—we introduce a new benchmark, dubbed Atos Q-score, which is application-centric, hardware-agnostic, and scalable to quantum advantage processor sizes and beyond. The […]

Fp -Linear and Fpm-Linear Qudit Codes From Dual-Containing Classical Codes

Quantum code construction from two classical codes D1[n,k1,d1] and D2[n,k2,d2] over the field Fpm ( p is prime and m is an integer) satisfying the dual containing criteria D⊥1⊂D2 using the Calderbank–Shor–Steane (CSS) framework is well-studied. We show that the generalization of the CSS framework for qubits to qudits yields two different classes of codes, namely, the Fp -linear CSS codes and the well-known Fpm -linear CSS codes based on the […]

One-Dimensional Lazy Quantum Walk in Ternary System

Quantum walks play an important role for developing quantum algorithms and quantum simulations. Here, we introduce a first of its kind one-dimensional lazy quantum walk in the ternary quantum domain and show its equivalence for circuit realization in ternary quantum logic. Using an appropriate logical mapping of the position space on which a walker evolves […]

Survey on Quantum Circuit Compilation for Noisy Intermediate-Scale Quantum Computers: Artificial Intelligence to Heuristics

Computationally expensive applications, including machine learning, chemical simulations, and financial modeling, are promising candidates for noisy intermediate scale quantum (NISQ) computers. In these problems, one important challenge is mapping a quantum circuit onto NISQ hardware while satisfying physical constraints of an underlying quantum architecture. Quantum circuit compilation (QCC) aims to generate feasible mappings such that […]