The role of differential equations (DEs) in science and engineering is of paramount importance, as they provide the mathematical framework for a multitude of natural phenomena. Since quantum computers promise significant advantages over classical computers, quantum algorithms for the solution of DEs have received a lot of attention. Particularly interesting are algorithms that offer advantages in the current noisy intermediate-scale quantum (NISQ) era, characterized by small and error-prone systems. We consider a framework of variational quantum algorithms, quantum circuit learning (QCL), in conjunction with derivation methods, in particular the parameter shift rule, to solve DEs.

For more about this article see link below.
For the open access PDF link of this article please click.